Approximation verteilt-parametrischer Systeme zweiter Ordnung mittels Krylov-Unterraummethoden / Approximation of Distributed-Parameter Second Order Systems Using Krylov Subspace Methods

نویسندگان

  • Joachim Deutscher
  • Christian Harkort
چکیده

Zusammenfassung Dieser Beitrag behandelt die Approximation linearer verteilt-parametrischer Systeme zweiter Ordnung mittels eines Galerkin-Ansatzes. Das resultierende endlich-dimensionale Approximationsmodell besitzt ebenfalls die Struktur zweiter Ordnung und ist wie das Originalsystem asymptotisch stabil und passiv. Es wird gezeigt, wie die Freiheitsgrade der Galerkin-Approximation zu wählen sind, um zusätzlich eine Momentenübereinstimmung mittels KrylovUnterraummethoden zu erzielen. Für Systeme mit kollokierten Einund Ausgängen sowie für unterschiedliche Dämpfungen werden Vereinfachungen der Approximationsmethode vorgestellt. Die neue strukturerhaltende Approximation wird anhand eines Euler-Bernoulli-Balkens mit Kelvin-Voigt-Dämpfung veranschaulicht. Summary In this article the approximation of linear second order distributed-parameter systems is considered using a Galerkin approach. The resulting finitedimensional approximation model also has a second order structure and preserves the stability as well as the passivity. Krylov subspace methods are used for choosing the degrees of freedom appearing in the Galerkin approach to assure moment matching. Simplifications of the approximation procedure are presented for systems with collocated inputs and outputs as well as for different types of damping. The structure preserving approximation of an Euler-Bernoulli beam with Kelvin-Voigt damping demonstrates the results of the article.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Strukturerhaltende Approximation linearer verteilt-parametrischer PCHD-Systeme Structure Preserving Approximation of Linear Distributed-Parameter PCHD-Systems

Zusammenfassung In diesem Beitrag wird ein Approximationsverfahren für lineare verteilt-parametrische PortHamiltonsche Systeme mit Dämpfung (PCHD-Systeme) vorgestellt, welches die Erhaltung der PCHD-Struktur des Originalsystems ermöglicht. Darüber hinaus kann sichergestellt werden, dass die Approximation eine von der Dissipativität des unendlich-dimensionalen Systemoperators abhängige Mindestst...

متن کامل

Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method

A structure-preserving dimension reduction algorithm for large-scale second-order dynamical systems is presented. It is a projection method based on a second-order Krylov subspace. A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The reduced system not only preserves the second-order structure but also has the same order of approximation ...

متن کامل

Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles

We consider the approximation of the matrix φ-functions that appear in exponential integrators for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices with a field-of-values in the left complex half-plane, we consider...

متن کامل

Block Krylov subspace exact time integration of linear ODE systems. Part 1: algorithm description

We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y ′ = −Ay+g(t), where y(t) is the unknown function. The method consists of two stages. The first stage is an accurate polynomial approximation of the source term g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatisierungstechnik

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013